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History of Al

e The Birth of Al (1957) - Frank Rosenblatt, perceptron

e The First Golden Years (1960s-1970s ) - Alan Turing, chatbots

e The First Al Winter (1970s-1980s) - funding, optimism down

e The Second Golden Years (1980s- 1987s) - Geoffery Hinton

e The Second Al Winter (1987-1993s) - slow compute, lack of data
e Revival and Growth (1990s-early 2000s) - Yann LeCun, backprop
e Rise of Modern Al (2000s-2010s)

e Current Boom (2010s-present)



Important Milestones in Al
e 1997: IBM's Deep Blue defeats world chess champion Garry

Kasparov.
e 2011: IBM's Watson wins Jeopardy!, showcasing advanced natural

language processing and knowledge retrieval.

e 2012: The ImageNet competition is won by a deep learning model
(AlexNet), marking a significant leap in computer vision.

e 2014: The Turing test is arguably passed for the first time by a
chatbot named Eugene Goostman.

e 2016: Google DeepMind's AlphaGo defeats world champion Go
player Lee Sedol, demonstrating Al's ability to excel at complex

strategic games.



Important Milestones in Al

e 2018: Google demonstrates Google Duplex, an Al system capable of
making phone calls and conducting natural conversations.

e 2020: OpenAl releases GPT-3, a large language model capable of
generating human-like text and performing various language tasks.

e 2022: DeepMind's AlphaFold solves the protein folding problem, a
major breakthrough in biological science.

e 2022-2023: The release of ChatGPT and other large language models
brings conversational Al to the mainstream, sparking widespread
public interest and debate.

e 2024: SORA, GPT4
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ML algorithms

Linear and Logistic Regression

K-Nearest Neighbour

Support Vector Machine ' o ==hs
Decision Tree O = e
Random Forest |

XGBoost )

Naive Bayes




DL Algorithms
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Transformer Based Networks

How everything started... e

Forward Transformer Encoder
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Current State of A "ol Lo -
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LLM Hype whyliMs? Why Not?

Capabilities - translation, summary, content, coding ‘ *
reasoning, explainable ‘
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Limitations - generalization, hallucination
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A DAY IN DATA

DEMYSTIFIYING DATA UNITS

tweets are sent
every day

Twittasr

320bn

emails to be sent
each day by 2021

306bn

emails to be sent
each day by 2020

2941

billion emails are sent

people use emails

The exponential growth of data is undisputed, but the numbers behind this explosion - fuelled by internet of things and
the use of connected devices — are hard to comprehend, particularly when looked at in the context of one day
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Facebook, including
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From the more familiar "bit" or ‘'megabyte’,
being used to explain the masses of data

larger units of measurement are more freguently

Unit Value Size
bit Dori 1/8 of a byte
byte B bits 1 byte
kilobyte 1,000 bytes 1,000 bytes
megabyte 1,000° bytes 1,000,000 bytes
gigabyte 1.000° bytes 1,000,000,000 bytes
terabyte 1,000 bytes 1,000,000,000,000 bytes
petabyte 1,000° bytes 1,000,000,000,000,000 bytes
exabyte 1,000* bytes 1,000,000,000,000.000,000 bytes
2attabyte 1,000 bytes 1,000,000,000,000,000,000,000 bytes
yottabyte 1.000* bytes 1.000,000,000,000,000,000,000,000 bytes

*A lrwercass "b” is used as an abbreviation for bits, while an sppencase "B” represents bytes.
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Facebonk

messages sent over WhatsAppand  ®
two billion minutes of voice and
video calls made

41TB

of data produced by a connected car
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Searches made a day

Searches made

a day from Google
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Smart insights

of data will be created every day by 2025
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photos and videos are
shared on Instagram
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Instagram Business

to be generated from wearable
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Philosophy, Ethics, and Explainabilit

Ethical Al - data
Explainable Al
Accountability and Liability
Is Al sentient or just maths?
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Future of Al

e Quantum Al - quantum computing algorithms, optimization

e Space Exploration - autonomous spacecraft navigation,
extraterrestrial mining, planetary exploration rovers

e Human-Robot Collaboration - collaborative robots
(cobots), assistive robots, human-robot interaction

e Al Enhanced Humans - brain-computer interfaces,
prosthetics, cognitive enhancement

o AGI (Artificial General Intelligence) - theories of general

intelligence, long-term implications, safety and alignment



Scientists and Engineers that made all these possible

Geoffrey Hinton - Backpropagation, "Deep Learning” book
Yann LeCun - LeNet CNN architecture

Andrew Ng - Google Brain, deep learning courses
lan Goodfellow - GANs, 'Deep Learning’ book
Demis Hassabis - AlphaGo, DeepMind

llya Sutskever - Transformer models, OpenAl
Andrej Karpathy - CS231n course, image recognition 2
Jurgen Schmidhuber - LSTM networks
Richard Socher - Dynamic Memory Networks
Ashish Vaswani - Attention mechanism
Jascha Sohl-Dickstein - Diffusion models g

And many more.....




Resources

Playground: playground.tensorflow.org

Understanding Deep Learning by Simon
J.D. Prince:
https://mitpress.mit.edu/978026204864

4/understanding-deep-learning/

Short Al course by Pytorch Lightning: Unit 1
https://www.youtube.com/watch? ni

v=6Py-tIEiXKw&list=PLaMu- Welcome to Machine
SDt_RBA4LyOxb0gsQVpLWRQC|tOb- Learning & Deep Learning
&RR=IAQB
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